Improving Network Intrusion Detection Through Classifier Combination

نویسندگان

  • Lalindra De Silva
  • Ravindra Aditya Varma
  • Raghav Aggarwal
چکیده

Network intrusion detection is a problem that’s hardly being solved completely. Firewalls and other existing solutions do provide some resistance to the wide variety of attack types that can occur, but they suffer the drawback of not being able to generalize well into unseen attack types. Through this report, we propose a framework for addressing the problem of network intrusion by extracting ideas from the machine learning community. Specifically, we focus on ensemble methods where multiple schemes are joined to do a better job at predicting malicious connections. With this approach, we propose that malicious connections can be predicted with high precision and high confidence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Accuracy in Intrusion Detection Systems Using Classifier Ensemble and Clustering

Recently by developing the technology, the number of network-based servicesis increasing, and sensitive information of users is shared through the Internet.Accordingly, large-scale malicious attacks on computer networks could causesevere disruption to network services so cybersecurity turns to a major concern fornetworks. An intrusion detection system (IDS) could be cons...

متن کامل

Anomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors

Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...

متن کامل

تولید خودکار الگوهای نفوذ جدید با استفاده از طبقه‌بندهای تک کلاسی و روش‌های یادگیری استقرایی

In this paper, we propose an approach for automatic generation of novel intrusion signatures. This approach can be used in the signature-based Network Intrusion Detection Systems (NIDSs) and for the automation of the process of intrusion detection in these systems. In the proposed approach, first, by using several one-class classifiers, the profile of the normal network traffic is established. ...

متن کامل

Experiments on Detection of Denial of Service Attacks using Bayesian Network Classifier

Denial of Service (DoS) and Distributed Denial of Service (DDoS) attack exhausts the resources of server/service and makes it unavailable for legitimate users. It can result in huge loss of money. With increasing use of online services and attacks on these services, the necessity of Intrusion Detection System (IDS) for detection of DoS/DDoS attacks has also marked by organizations. Different te...

متن کامل

Improving the Attack Detection Rate in Network Intrusion Detection using Adaboost Algorithm

Problem statement: Nowadays, the Internet plays an important role in communication between people. To ensure a secure communication between two parties, we need a security system to detect the attacks very effectively. Network intrusion detection serves as a major system to work with other security system to protect the computer networks. Approach: In this article, an Adaboost algorithm for net...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011